If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-781=0
We add all the numbers together, and all the variables
y^2-781=0
a = 1; b = 0; c = -781;
Δ = b2-4ac
Δ = 02-4·1·(-781)
Δ = 3124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3124}=\sqrt{4*781}=\sqrt{4}*\sqrt{781}=2\sqrt{781}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{781}}{2*1}=\frac{0-2\sqrt{781}}{2} =-\frac{2\sqrt{781}}{2} =-\sqrt{781} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{781}}{2*1}=\frac{0+2\sqrt{781}}{2} =\frac{2\sqrt{781}}{2} =\sqrt{781} $
| (9x-3)=(7x+5) | | 5x+6x+110=180 | | 1/3x-4=21/3x | | -4(3q+2)=19-9q | | 1/5=5^2^c^+^3 | | r1.2=16 | | t-6=54 | | P=5s−(100+2s) | | 12w=36,w=3 | | -3/4{4x-12}+4{6x+1}=43 | | 8p-2=20 | | 4(x-1)^6=256 | | 9x+22=75+4x+7 | | 9x+7=30+6x+13 | | 14y2-28=0 | | 0.12(3x+5)=0.36x+0.6 | | 4(s-6)-3=-19 | | 14+2x=65 | | –14=m–4+–16 | | –14=m–4+ –16 | | 2b−6=6 | | w^2+4w+20=0 | | 5x3x=7x-3x-9 | | 2z−6=6 | | y2-14=0 | | Y=3x+175 | | 3b+-7=-4b+14 | | G+8(7f+4=) | | 2(3x−1)=1 | | 3=2(3.14)c | | 11+7x+58=15x+13 | | 75(4x+25)°=180 |