If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-14=0
We add all the numbers together, and all the variables
y^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| Y=3x+175 | | 3b+-7=-4b+14 | | G+8(7f+4=) | | 2(3x−1)=1 | | 3=2(3.14)c | | 11+7x+58=15x+13 | | 75(4x+25)°=180 | | –13+7x=–3x–33 | | 6z+13=5(z+1) | | 75+(4x-25)°=180 | | 14=2(3.14)a | | –v−10=10+3v | | –5k+10=–10−7k | | x2=329 | | -8(3-s0)=32 | | 8p+8=28 | | Sx3/4=1464 | | 10c=–8+9c | | 8p+8=24 | | 5+5r=3r−9 | | 4x-12=8+24 | | 15p-5=20 | | 4/x2=0 | | (–4b+5)(7)= | | –3f+10=–2f | | 2(x+3)-1=5x+2 | | x9=1/4 | | 18p-6=12 | | 2(6-2x)=12-4x | | 4÷x=1.5 | | 16p-8=3 | | 2+14y=70 |