If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+9y-36=0
We add all the numbers together, and all the variables
y^2+9y-36=0
a = 1; b = 9; c = -36;
Δ = b2-4ac
Δ = 92-4·1·(-36)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-15}{2*1}=\frac{-24}{2} =-12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+15}{2*1}=\frac{6}{2} =3 $
| 5x+2=3x=8 | | 17x2+17x+52=0 | | 2x+6=12-2x | | 6a/7=2.4 | | -3x+1.3=-4x | | 0=-2t^2+40t | | 4x-5=x=13 | | X-3(x-1)=27 | | 2-4(5-5x)=0 | | x²+6x-3=-3 | | 8x1.6=6x+2.8 | | (1/x+2)+(1/x^2-2x)-(8/x3-4x)=0 | | n=n(n+1) | | 5x-6=2(2x-1 | | 9x-7=41-3x | | 2-8(5x+3)=9 | | 3(c-3)=7c-2 | | 3x+1.4=2x | | 5d-8=3(2d+1) | | 3x+4x-6x=17x= | | x+3÷5x+1=x+7÷5x-11 | | 6x-2=2(2x+1) | | 5x+3=2x=3.3 | | X+2x+3x+4x+5x=45x= | | 5x+20=2x-13 | | 64g^2-4=0 | | 2b+5=8b-7 | | 10a+5=8a+10 | | 81-p^2=0 | | 3(2-c)=21 | | 5x^2-3x-5x+8=0 | | 0.5x-15=8x |