If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+3y-40=0
We add all the numbers together, and all the variables
y^2+3y-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| 3x+24-31+4x=0 | | 5/A-2/x=1/B | | -3x-1=4x+6 | | 2x-41=x+10 | | 2x2+3x+8-5=2x+2x2 | | (x-1)^2+7(x-1)+12=0 | | X=10+1/2x | | 5x-22=2(x+31) | | x^-1/2=9/4 | | 6(-6+5x)=-276 | | 4(-7x-2)=188 | | -2(-7+x)=34 | | (4x+8)=x2+2x | | 5x=-38 | | -2(x+1)=-42 | | 15/12=7/q | | 3x²/5=15/x² | | 45=2y+35 | | z²+12=37 | | 13-(4x-6)=x-3 | | z²+12=36 | | 3(-1x-8)=9 | | x+x+23=53 | | 14x-(2x-6)=54 | | 3x²+x=x+243 | | 6(2x+1)=7(3x-2) | | -2(4+2x)=-48 | | x-1=x+1.2 | | -(6/w+4)=(1/4w+16)+1 | | 10^2x-3=200 | | x+x+1+x+2+x+3=66 | | 7w-15w=24 |