If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y-9/10y=6
We move all terms to the left:
y-9/10y-(6)=0
Domain of the equation: 10y!=0We multiply all the terms by the denominator
y!=0/10
y!=0
y∈R
y*10y-6*10y-9=0
Wy multiply elements
10y^2-60y-9=0
a = 10; b = -60; c = -9;
Δ = b2-4ac
Δ = -602-4·10·(-9)
Δ = 3960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3960}=\sqrt{36*110}=\sqrt{36}*\sqrt{110}=6\sqrt{110}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-6\sqrt{110}}{2*10}=\frac{60-6\sqrt{110}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+6\sqrt{110}}{2*10}=\frac{60+6\sqrt{110}}{20} $
| 5x0.4x0.03x0.002= | | (7x-11)=(5x+1) | | 3m/5=45 | | 10•18=x | | (5x-27)+(7x-26)+(180-(10x-23))=180 | | 30=-5*q+50 | | 50=2(y+10) | | 26=n+18 | | z*13=117 | | (2x+20)+(5x-11)+(180-(11x-63))=180 | | 6-3x/12=2 | | 5+2=x+4 | | 5.25+22.50=x | | (3x-4)+(9x+17)+(6x-31)=360 | | x-0.25=45 | | 6+10=x+12 | | 2k2-2k-10=0 | | 3m-11=2(4m-5) | | 26-n-2=7n+21 | | 45=-9(x+6) | | 14-n-6=4n+16 | | 35+2x=1200 | | 3x-4=20. | | 2x(8x-23)=146 | | -2(3x-4)=10-6x | | 33+2x=293 | | 10=15-10t | | 13xN=1599 | | 3x-12=3(x4 | | 15=10-10t | | 13+15-12n-20=8 | | H(t)=-5t^2+150t+100 |