y-1/y+1=(y+1)/(3y-1)

Simple and best practice solution for y-1/y+1=(y+1)/(3y-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y-1/y+1=(y+1)/(3y-1) equation:



y-1/y+1=(y+1)/(3y-1)
We move all terms to the left:
y-1/y+1-((y+1)/(3y-1))=0
Domain of the equation: y!=0
y∈R
Domain of the equation: (3y-1))!=0
y∈R
We calculate fractions
y+(-1*(3y-1)))/2y^2+(-((y+1)*y)/2y^2+1=0
We calculate fractions
y+((-1*(3y-1)))*2y^2)/(2y^2+(*2y^2)+(-((y+1)*y)*2y^2)/(2y^2+(*2y^2)+1=0
We get rid of parentheses
y+((-1*(3y-1)))*2y^2)/(2y^2+*2y^2+(-((y+1)*y)*2y^2)/(2y^2+(*2y^2)+1=0
We calculate fractions
y+*2y^2+(((-1*(3y-1)))*2y^2)*(2y^2+*2y^2+1)/((2y^2*(2y^2+(*2y^2)+1)+((-((y+1)*y)*2y^2)*2y^2/((2y^2*(2y^2+(*2y^2)+1)=0
We calculate terms in parentheses: +(((-1*(3y-1)))*2y^2)*(2y^2+*2y^2+1)/((2y^2*(2y^2+(*2y^2)+1)+((-((y+1)*y)*2y^2)*2y^2/((2y^2*(2y^2+(*2y^2)+1), so:
((-1*(3y-1)))*2y^2)*(2y^2+*2y^2+1)/((2y^2*(2y^2+(*2y^2)+1)+((-((y+1)*y)*2y^2)*2y^2/((2y^2*(2y^2+(*2y^2)+1
We can not solve this equation

See similar equations:

| y-1/y+1=y+1/(3y-1) | | A=1/2x9x7 | | y-1/y+1=y+1/3y-1 | | 5=9=x | | 5n−7(n+3)+2n=-25 | | (y-1)/(y+1)=(y+1)(3y-1) | | 4v=5-2v | | 20-4p=6-p | | x+(-3x-13)+9=0 | | (y-1)/(y+1)=12 | | (y-1)=12 | | -5n=-3n-8(6+5n) | | 3w/4w+3=3 | | 2w/3w=3w/(4w+3) | | 0.6(10x-17)=4.2(0.2x+5) | | (6x-2)=78 | | -4x+5x=-100 | | 16+2x=7+5x | | 9=9h​ | | (3x+5)+(4x)=8x-14 | | 3w/4w+3=666 | | 3w/4w+3=1 | | -x/5+x/4=-5 | | 3w/4w+3=300 | | 1/4(20-4p)=6-p | | -5x-7x-100=140 | | Y=23-4x5 | | 10^b=1,000 | | (y+1)(3y-1)=-10 | | 63+(x+13)=3x | | 7x+39=-10 | | (y+1)(3y-1)=666 |

Equations solver categories