y+100=10/9y+900

Simple and best practice solution for y+100=10/9y+900 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y+100=10/9y+900 equation:



y+100=10/9y+900
We move all terms to the left:
y+100-(10/9y+900)=0
Domain of the equation: 9y+900)!=0
y∈R
We get rid of parentheses
y-10/9y-900+100=0
We multiply all the terms by the denominator
y*9y-900*9y+100*9y-10=0
Wy multiply elements
9y^2-8100y+900y-10=0
We add all the numbers together, and all the variables
9y^2-7200y-10=0
a = 9; b = -7200; c = -10;
Δ = b2-4ac
Δ = -72002-4·9·(-10)
Δ = 51840360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{51840360}=\sqrt{36*1440010}=\sqrt{36}*\sqrt{1440010}=6\sqrt{1440010}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7200)-6\sqrt{1440010}}{2*9}=\frac{7200-6\sqrt{1440010}}{18} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7200)+6\sqrt{1440010}}{2*9}=\frac{7200+6\sqrt{1440010}}{18} $

See similar equations:

| 6x^2-6x-72=62 | | 60x+60x+30+30=200 | | 0.5s+1=7+4.53 | | 2x^2=114 | | (8x-7)+33=90 | | 4c=124 | | -8+6q=10-8+5q | | -4+60=7n-6 | | -5/9y+17/9=-3y+19 | | (6x+6)+(4x+14)+(11x+11)=180 | | 4b-10=-8 | | 3n=-5+2n | | 4x+3=61° | | -5-8r=-10r+9 | | 3x+2(30)=180 | | g+16=65 | | −3x+7(x+5)=5x+38 | | 6=y/5+8 | | -2x+7=-5x+3-10 | | 3u+33=6(u+1) | | a2+144=225 | | –36=9(n−99) | | 3(m-1) = m+9 | | x2=64/729 | | x-3(-1)=15 | | 4x2-5x+7=0 | | 178=69.09+2.24f | | 0.25m=3.5 | | 56x-10=23x+26 | | 5y+20=45 | | 6(x+3)=24x= | | 6x2+8x=0 |

Equations solver categories