If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x=0
a = 6; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·6·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*6}=\frac{-16}{12} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*6}=\frac{0}{12} =0 $
| 12=8x^2+36 | | 12=6-(-0.25m) | | 24=2(w+3)-5 | | Y=10x+17 | | 6x+4x-3x=7 | | 5m-5m+m+m=16 | | 5n-8=3n+5-n | | 2x^+5x-12=(2x-3)(x+4) | | 7j-6j+2j=18 | | b^2+5b-25=0 | | 3(6+2x)=8(5x+6)-4 | | 12y-11y-y+5y-1=19 | | 3x-3=4x=1 | | 14y-9y-12=53.25 | | (4n+8)=60 | | -2y+3=8y-6 | | x-13/3=15 | | 10-4y=7y+21 | | 8x+16=289 | | 10x^2+11x=0 | | 9x-6x+3=3(x+1) | | 9/7y-14=-5 | | 12r+24-5r=3 | | 12d+4d-13d-3=3 | | 7x+35=110 | | 7x-7=8x-12 | | m+5/9-6=2m-1/3-1/9 | | 8⋅=(n÷3)⋅ | | 14c-13c-c+4c+1=13 | | 13+2=-5(4x-3) | | x+(0.15x)=5.49 | | 6v-3v+6v-1=8 |