If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y(y-10)=21
We move all terms to the left:
y(y-10)-(21)=0
We multiply parentheses
y^2-10y-21=0
a = 1; b = -10; c = -21;
Δ = b2-4ac
Δ = -102-4·1·(-21)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{46}}{2*1}=\frac{10-2\sqrt{46}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{46}}{2*1}=\frac{10+2\sqrt{46}}{2} $
| 2x-3×=4x-35 | | 3x+64=360 | | -5d-(8-d)=12 | | 2x-0=4Y-8 | | x³-x=13800 | | 5x+4=3x+16x | | 6y-9=53+5 | | 3x+7=26+6 | | 2.7x-1.2x=1/2 | | (4+5)x=4x+5x | | 3x+78=360 | | -4x+10=-10+x | | 4b+62b=8 | | 30y-60=180 | | 4x+4/2=x | | 4(2-2/54)+3y=15 | | 4(2-2/54)+3t=15 | | -1-y-3y=31 | | 3n²-8n-4=0 | | (x+2)^2+(x-1)^2=32 | | 5=2x-3=13 | | (x+2)^2+(x-1)^2=17 | | -(-15+9y)+8y=8 | | 2m+(3m-7)+9=5(2m+3)-9 | | x4+x3+4x2+4x=0. | | (x-4)^2+(x-1)^2=17 | | 102x=-101 | | (180-x)+89+101+95+(180-2x)=540 | | -2x-3x2+6=0 | | 3a-3/6=4a+1/15+2 | | 2x^2+(x+1)^2=10 | | X-15=x+3 |