If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x-3x^2+6=0
a = -3; b = -2; c = +6;
Δ = b2-4ac
Δ = -22-4·(-3)·6
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{19}}{2*-3}=\frac{2-2\sqrt{19}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{19}}{2*-3}=\frac{2+2\sqrt{19}}{-6} $
| 3a-3/6=4a+1/15+2 | | 2x^2+(x+1)^2=10 | | X-15=x+3 | | 3•p–6=–2•p+14 | | x^2+(x-1)^2=-3 | | x+10=3x2 | | 4y=3(y-2)=2(y+4)-(2y-7) | | 0=50x-5x^2 | | Y=1/2x-1/4 | | (3x-2)(4x=4) | | 3x(2x-3)+3=0 | | -5+3=x+9 | | 0=-0.05x^2+8x-140 | | 14^4x=13^x-9 | | 8+2z=0 | | x-5=(-3+42)/6 | | (10+5)3=x | | 2x+7x½-4=0 | | x-0.1=0.9x | | 16x^2+24√2x=-18 | | 4x(5-x)=25 | | n^2+89=-4n | | 1/2x2+x+1=0 | | 10.89÷1000000-0.0066x+x2=0 | | 20u²-25u+5=0 | | (-x)^3+5x+10=0 | | 5x2+5x-1/2=0 | | x×15=-75 | | (1/2-x)^2+3x=1/4+x(x+2) | | 5x+8=24-8x | | 11(x^2+5)=x | | 9+4g–5= |