If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-72y=0
a = 1; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·1·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*1}=\frac{144}{2} =72 $
| 15n^2+50n+32=-2n | | -2-6(4+4x)=158 | | 5+4x=9x-5 | | 7a+5a=22 | | 20x^2=144x-144 | | 4(2x+1)=2(x+1)+6(x+2) | | -6(1-4n)=-150 | | 7n^2=7 | | 13x-44=73 | | (3b+2)(b+3)=0 | | 14+1x=11 | | -48=w+2 | | 3x-9=-39 | | 2v^2-22v=-48 | | 3+3x=2(3x+6-x-1 | | 30/6=6x/3 | | 3x−1/4=−511 | | 3,6=h/10 | | 4x^2=-60x-224 | | a=(26)(6) | | -6+5(-1-z)=19 | | 2/5(20a-15)-6=0 | | 30+9x+(30+×)=180 | | 30+9x+(30+×)=189 | | 16-7n=-6(7+6n) | | (d=+4)+6 | | 8/9m-1/9=7/90 | | 0,5m+20=70 | | 9=a/9-4 | | 4(u-3)-8u=-36 | | 7x^2-7x-5=-5x | | -1/2(-4s+8)=3 |