x=3-(x+3)(x+3)

Simple and best practice solution for x=3-(x+3)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=3-(x+3)(x+3) equation:



x=3-(x+3)(x+3)
We move all terms to the left:
x-(3-(x+3)(x+3))=0
We multiply parentheses ..
-(3-(+x^2+3x+3x+9))+x=0
We calculate terms in parentheses: -(3-(+x^2+3x+3x+9)), so:
3-(+x^2+3x+3x+9)
determiningTheFunctionDomain -(+x^2+3x+3x+9)+3
We get rid of parentheses
-x^2-3x-3x-9+3
We add all the numbers together, and all the variables
-1x^2-6x-6
Back to the equation:
-(-1x^2-6x-6)
We get rid of parentheses
1x^2+6x+x+6=0
We add all the numbers together, and all the variables
x^2+7x+6=0
a = 1; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·1·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*1}=\frac{-2}{2} =-1 $

See similar equations:

| -7(4-2v)=36+6v | | 3x+8=9+3-14 | | 5-10x=8x=45-30 | | 9(2f-2)=4(4f-8 | | 4-(2m+11)=-3m | | -18b=-53 | | -7x-4=34 | | 5y-3=3y+5y | | 19x-40=110 | | 2(5x+4)=4(3x-10) | | 16+1x=33 | | (X+2)=(3x-8) | | 9z−–20=65 | | .10x+35=25+.15x | | -4x+7=3-4(x-1) | | 2v-3=5+3v | | 9x+13=5x+29 | | -4x+7=3-4(x-1 | | n=-9+31 | | 24=4+5h | | 2x5+3x-10=55 | | -1/2n+2=-4(n-1/2) | | 24=4=5h | | -2(x-1)-x+3=1 | | 1/4(6t-4)=9/4t-t+4=8 | | 10/5=7x+5 | | d/12+780+d/8=1,080 | | -8-7p=8p-1 | | b-3/16=5/10 | | 2x(2x+3)=6+x | | -1.4g=7= | | 5(4-3a)-6(2-4a)=-1(8-9a) |

Equations solver categories