If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=(x+41/2)(x+9)
We move all terms to the left:
x-((x+41/2)(x+9))=0
Domain of the equation: 2)(x+9))!=0We add all the numbers together, and all the variables
x∈R
x-((+x+41/2)(x+9))=0
We multiply parentheses ..
-((+x^2+9x+41x^2+41/2*9))+x=0
We multiply all the terms by the denominator
-((+x^2+9x+41x^2+41+x*2*9))=0
We calculate terms in parentheses: -((+x^2+9x+41x^2+41+x*2*9)), so:We get rid of parentheses
(+x^2+9x+41x^2+41+x*2*9)
We get rid of parentheses
x^2+41x^2+9x+x*2*9+41
We add all the numbers together, and all the variables
42x^2+9x+x*2*9+41
Wy multiply elements
42x^2+9x+18x*9+41
Wy multiply elements
42x^2+9x+162x+41
We add all the numbers together, and all the variables
42x^2+171x+41
Back to the equation:
-(42x^2+171x+41)
-42x^2-171x-41=0
a = -42; b = -171; c = -41;
Δ = b2-4ac
Δ = -1712-4·(-42)·(-41)
Δ = 22353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-171)-\sqrt{22353}}{2*-42}=\frac{171-\sqrt{22353}}{-84} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-171)+\sqrt{22353}}{2*-42}=\frac{171+\sqrt{22353}}{-84} $
| (n=(2.06)^2(26312)(0.5)(0.5))/((〖0.03)〗^2(26312-1)+(〖2.06)〗^(2)(0.5)(0.5)) | | 14x2-28x=0 | | 16=2a-6a | | 2x^+28x^+96x=0 | | 3/5(4x-3)=15 | | Y=|16x+7| | | 2x/7=1-2x+1/3 | | z+0.52=-8.5 | | r-2-6=14 | | z=0.52=-8.5 | | 2+3(x–5)=4(x–1) | | 12x-33=7+x | | 8*x=1782 | | (2x+5)(2x-1)=-7 | | x-165=420 | | (2+x)(x-5)=56 | | 2X^2+8x-5=-7 | | 8x=1782 | | 76-1x=92-2x | | v=-10-9v | | -3r=-4r+10 | | 3×6-2y=14 | | 8x^2-20x-33=0 | | -5y+9=-4y | | 6*s+s=39 | | 9=8x-47 | | m+7=4m+4 | | 4.2v+.8v=54 | | 50=85x | | 3/7(u)=9 | | 11m-6=8m+9 | | (5+1/2)+0.6x=16 |