If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=223
We move all terms to the left:
x2-(223)=0
We add all the numbers together, and all the variables
x^2-223=0
a = 1; b = 0; c = -223;
Δ = b2-4ac
Δ = 02-4·1·(-223)
Δ = 892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{892}=\sqrt{4*223}=\sqrt{4}*\sqrt{223}=2\sqrt{223}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{223}}{2*1}=\frac{0-2\sqrt{223}}{2} =-\frac{2\sqrt{223}}{2} =-\sqrt{223} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{223}}{2*1}=\frac{0+2\sqrt{223}}{2} =\frac{2\sqrt{223}}{2} =\sqrt{223} $
| (2n+3)^=(3n=2)^ | | (2x)(2x)=1 | | (2x+5)(2x-5)(3x+7)=0 | | 4/7=x-3721 | | 18-2(5+3x)=4x | | x–9x=9–7 | | |x|(x+2)^2(x-3)^2=0 | | 4=6-0.5x | | 18x-3=10x-11 | | -5(x+3)+3(3x-4)=3(x-3)+10 | | 3n-9=7n+3 | | x=5(x+7)-4(9+x)+25 | | x/4=2=4 | | 7u+1=1 | | 6s-19=5 | | 16/x=32-16 | | 5z+20=35 | | 3(2x+5)=2x-9 | | 64+2y=98 | | 15x=50-40/10 | | 101/2+5x/6=-30 | | 10-5x/6=20/3 | | 5(7y+15)-2(17y+25)=20 | | b÷5+3=13 | | 5x-80/10=10/20 | | 9x+7=-19 | | 5x-x/5=48 | | n+9=1= | | 4-b=17 | | 7x-4/10=10/5 | | 10x-4/5=80 | | x+x+x-x+100=100 |