If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2=1764
We move all terms to the left:
x2-(1764)=0
We add all the numbers together, and all the variables
x^2-1764=0
a = 1; b = 0; c = -1764;
Δ = b2-4ac
Δ = 02-4·1·(-1764)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*1}=\frac{-84}{2} =-42 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*1}=\frac{84}{2} =42 $
| -19=2w | | 6x+22+9x-2=180 | | 25=3(y+5)-5y | | -36=z+14 | | 7x+18=7x+8 | | 5x+3-2x+4=2-(-5-3x) | | -4c+3=-45 | | -3x+5+x=9-4+2x | | 6(u-3)-8u=-8 | | t-2=-22 | | 88/917/9=c | | 14y-5y=27 | | |3k-8|=|7k+3| | | 6y=24+3y | | 3(y+5)=5(y−3) | | 11x^2+6x-12=0 | | 50=1200+190x | | (10-2x)(24-2x)=0 | | 7u=18+5u | | 18=5v4v | | 3(2x-6+5=6(x-2)-1 | | 78=(4x+2) | | 3(2x-6+5=6(x-2-1 | | -6(7x3)=444 | | 13n+20=95 | | 2/7z=14 | | -13x+12=13x+12 | | 5e-18=-3(e+4) | | x-(-19)=30 | | -3(-4x-7)=117 | | x-(-7)=-11 | | -6(-7x-3)=444 |