If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-9x+6=0
We add all the numbers together, and all the variables
x^2-9x+6=0
a = 1; b = -9; c = +6;
Δ = b2-4ac
Δ = -92-4·1·6
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{57}}{2*1}=\frac{9-\sqrt{57}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{57}}{2*1}=\frac{9+\sqrt{57}}{2} $
| 124°=(2x+4)° | | 6y-5-4y=-11 | | 5x–10=x+46 | | 5^(2x+4)×5^(x+1)-125=0 | | 53=8n-4 | | 3y÷8-9=13+y÷8 | | Y=1000x^2+1100x-2.5 | | -27-7b=2b-6(4b-8) | | 3•x+9=33 | | 7t+6-2(5+3t/2)=5t | | (3y÷8)-9=13+(y÷8) | | -27-7b=2b-(4b-8) | | 4(2x-3)=x-12=7x | | -3(x-1)=9+15 | | (3y÷8)-9=13+(y/8) | | (x+1)^2=43 | | 900x+1400=4100 | | -7-5p=3p+20 | | A/3+2=a+1/2 | | 3-2(b-20=2-7b | | (x+2)^2=43 | | 900x-1400=4100 | | 7(2e−1)−3=6+6ee= | | 6=-2/u | | A=1/2*12*h | | 14=-2(t–17) | | 9=3(v+11) | | 4100+900x=1400 | | 1+6x-5x=6(3x+1)-5 | | 11x-12+2*(4x+1)=180 | | g^2-4g+57=-5 | | 2x+x+X-24°=180° |