If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-61=160
We move all terms to the left:
x2-61-(160)=0
We add all the numbers together, and all the variables
x^2-221=0
a = 1; b = 0; c = -221;
Δ = b2-4ac
Δ = 02-4·1·(-221)
Δ = 884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{884}=\sqrt{4*221}=\sqrt{4}*\sqrt{221}=2\sqrt{221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{221}}{2*1}=\frac{0-2\sqrt{221}}{2} =-\frac{2\sqrt{221}}{2} =-\sqrt{221} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{221}}{2*1}=\frac{0+2\sqrt{221}}{2} =\frac{2\sqrt{221}}{2} =\sqrt{221} $
| 19t-8t-t=20 | | 13w-9w+2w-2w+1=5 | | 9r-r-7r-1=3 | | -0.59+0.39x=4.2 | | 5m-m-4m+m=16 | | 9b-9b+6b-6=12 | | 8z-4z-3z+3=14 | | 3x/7+8=20 | | 2x+1=572 | | 10p-3p-6p+3=17 | | 7h-h-5h=10 | | 14b-5b-7b+2=10 | | 20k-17k+k+4k+1=17 | | 20k-7k+k+4k+1=17 | | 3z-z-z-1=11 | | 3w-3w+w+1=7 | | 4^(2m)=128 | | 5p-3p-1=17 | | 2m^2+13m-7=0 | | 5u2+10u=0 | | 0.75+2(x0.5)=3x-0.4 | | 0.5+-4=x-0.8 | | x+(x+2)+((2+x)+4)=196 | | X^2+40x-235=0 | | 8.3(p-4)=2p | | 14x=3(9) | | 3^1-x=27 | | 13x-23=119 | | 16+2u=10u | | +8x-10=29x+22-x | | x-75x=9 | | x+12=4x+-18=3x-4=180 |