If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-5=13
We move all terms to the left:
x2-5-(13)=0
We add all the numbers together, and all the variables
x^2-18=0
a = 1; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·1·(-18)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*1}=\frac{0-6\sqrt{2}}{2} =-\frac{6\sqrt{2}}{2} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*1}=\frac{0+6\sqrt{2}}{2} =\frac{6\sqrt{2}}{2} =3\sqrt{2} $
| 6p-4=2p+4 | | -43-13x=-17x+17 | | s*7+30=233 | | 40=16+8h | | 7-s=6 | | 36-2x=40-6x | | 3(y-5)=-6y-42 | | -2(x+5)=2(x-3) | | -38-13x=-19x+16 | | -4-15x=-20x+11 | | -5(h−68)=-80 | | 9p-9=8p-7 | | 9p-2=8p-7 | | 5x-140=-5 | | 7p-2=5p+2 | | 18x+6=8x+86 | | 8s−22=2 | | L9x-19=2x-5 | | 2v-36=8(v-6) | | 24+8q=80 | | 8x+9=11x-4 | | 50+6x+2=11x+12 | | X=4^y | | 0.9+x=2/7 | | 2c=(3c+-4)=-4 | | 20+4x+9=8x-7 | | 60+10x=24x+4 | | 7m-9=3m+1 | | 2y+8=8y-10 | | 5w+3/2=4w+2/7+7 | | 22.8+(18)8=f | | (4x-2)+(3x-5)=7x+3 |