# x2-3x+5=(x+5)2

## Simple and best practice solution for x2-3x+5=(x+5)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so dont hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

## Solution for x2-3x+5=(x+5)2 equation:

x2-3x+5=(x+5)2
We move all terms to the left:
x2-3x+5-((x+5)2)=0
We add all the numbers together, and all the variables
x^2-3x-((x+5)2)+5=0

We calculate terms in parentheses: -((x+5)2), so:
(x+5)2
We multiply parentheses
2x+10
Back to the equation:
-(2x+10)

We get rid of parentheses
x^2-3x-2x-10+5=0
We add all the numbers together, and all the variables
x^2-5x-5=0
a = 1; b = -5; c = -5;Δ = b2-4acΔ = -52-4·1·(-5)Δ = 45The delta value is higher than zero, so the equation has two solutionsWe use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{5}}{2*1}=\frac{5-3\sqrt{5}}{2}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{5}}{2*1}=\frac{5+3\sqrt{5}}{2}$

`