If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-2x+1=80
We move all terms to the left:
x2-2x+1-(80)=0
We add all the numbers together, and all the variables
x^2-2x-79=0
a = 1; b = -2; c = -79;
Δ = b2-4ac
Δ = -22-4·1·(-79)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8\sqrt{5}}{2*1}=\frac{2-8\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8\sqrt{5}}{2*1}=\frac{2+8\sqrt{5}}{2} $
| 2x(4x−15)=0 | | 11/2(2x+4)=11/3(3x-6) | | -9+4(f-1)=-13+4f | | t-1/7=1/9 | | -9+4(f-1=-13+4f | | b+7.3=3.9 | | (3x+1)/2=(2x+9)/3 | | (3x+1)/2=(2x+9)/2 | | 2(x)+4x-3=0 | | -(f–56)=-11 | | 14a-17=28 | | 2(x)^3+4x-3=0 | | 3x+23=7x-37+9x-40 | | 9d+2=-34 | | 6(4x-6)=42 | | 2,5t=10 | | 3x+23=9x-40+7x-37 | | -4/1=-16/f | | 1/7x+4=8/9x-2 | | 5x-4/6=3x-2/4 | | x2-8x+16=75 | | 5/9n+7=12 | | 7x-37+9x-40=3x+23 | | 3r^2+8r=16 | | 9k-4=10k | | 2x+5=324 | | 6c×12=48 | | b-11/27=-8 | | 3x-2/4-2x+1/3=1/2 | | 3^2+8r=16 | | -8t+9=-9-6t | | 4+5.8u=-48.2 |