If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-14x-43=0
We add all the numbers together, and all the variables
x^2-14x-43=0
a = 1; b = -14; c = -43;
Δ = b2-4ac
Δ = -142-4·1·(-43)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{23}}{2*1}=\frac{14-4\sqrt{23}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{23}}{2*1}=\frac{14+4\sqrt{23}}{2} $
| 3/4z=-41/8 | | (x-2)*x=120/2 | | 2(3x-4)+5x=14 | | 8.96=u/7 | | x2+(x+6)2=90 | | 4(3x-3)^(2/3)=36 | | (x-2)*x=120 | | 3x2+2x+45=0 | | -9+3y=45 | | 54=-3(14-8x) | | 6x+19=3x+4 | | -27+3y=45 | | 3x2+19x=154 | | 3x2-41x=-110 | | 8/11a=8 | | 7(2+5x)=371 | | -9v–3v=84 | | H=-16t^2+1064t | | 1,4-x=12 | | 3x-2x=11;x+7=8 | | 4(6x+3)=-180 | | 2/9=y-2/9 | | X^2-7x+3=12 | | 3x-2x=11x+7=8 | | 0=-16t^2+1064t | | A÷b=13 | | 35^2+17x+2=0 | | 250=Lx125 | | 0.12(y-8)+0.02y=0.06y-0.3 | | 7(x-3)=7(x+5) | | x+(4+3x)=72 | | 7(x-3)=7(x+5) |