If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-12(12-x)=7x+3(8-x)-8
We move all terms to the left:
x2-12(12-x)-(7x+3(8-x)-8)=0
We add all the numbers together, and all the variables
x2-12(-1x+12)-(7x+3(-1x+8)-8)=0
We add all the numbers together, and all the variables
x^2-12(-1x+12)-(7x+3(-1x+8)-8)=0
We multiply parentheses
x^2+12x-(7x+3(-1x+8)-8)-144=0
We calculate terms in parentheses: -(7x+3(-1x+8)-8), so:We get rid of parentheses
7x+3(-1x+8)-8
We multiply parentheses
7x-3x+24-8
We add all the numbers together, and all the variables
4x+16
Back to the equation:
-(4x+16)
x^2+12x-4x-16-144=0
We add all the numbers together, and all the variables
x^2+8x-160=0
a = 1; b = 8; c = -160;
Δ = b2-4ac
Δ = 82-4·1·(-160)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{11}}{2*1}=\frac{-8-8\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{11}}{2*1}=\frac{-8+8\sqrt{11}}{2} $
| 2x+8=50. | | 1/2(24x+8)=2x-5 | | -10(s+2)=-36 | | y/2+11=38 | | 17=7n+2 | | 24+6x=-2(-3x+-4)+8 | | 4x3+6x2+6x-1+5x3-x2-(-9)=0 | | x^2+4x=68 | | 25=7n+10 | | -8y-56=0 | | 10x-44=55+7x | | 6(3t+1)-15=t-(t+8) | | x+x2+2x=4x-5 | | 6x+154=12x-14 | | x+x+2+2x=-5 | | 8(-4n+3)=7n+26 | | 5=2u-17 | | x2-2x+12=0 | | 6=5n+4 | | 3k+6=15 | | -n+3n=6+n | | -7=5–4c | | 3.3r+14.7=-6.74 | | 0.53+0.41t=4.06t-0.93 | | 7=(3x-5) | | 0=5n-6 | | 61=4y+9 | | 2q+5=-1 | | 2p/6+18=6 | | 3m+3=19-m | | -7+x3-5x2+4x-5x+3=0 | | 9m+6=6m-3 |