If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-10=154
We move all terms to the left:
x2-10-(154)=0
We add all the numbers together, and all the variables
x^2-164=0
a = 1; b = 0; c = -164;
Δ = b2-4ac
Δ = 02-4·1·(-164)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{41}}{2*1}=\frac{0-4\sqrt{41}}{2} =-\frac{4\sqrt{41}}{2} =-2\sqrt{41} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{41}}{2*1}=\frac{0+4\sqrt{41}}{2} =\frac{4\sqrt{41}}{2} =2\sqrt{41} $
| 3.26(s-9)=16.3 | | -y+20=275 | | -4a+10=-4a+2a | | 3/7=30/x | | x^{^2}-9=x^{^2}-16 | | 42=-2-16x | | 2(4x+6)=-12 | | 2(3x-5)=24 | | x2=39. | | q+142/32=13 | | 151+87+x=180 | | 238-u=58 | | 150m-125m+43,875=46,125-200m | | 24(m+6)=480 | | 53+2x=7x-7 | | x3=160. | | 447=6q+69 | | 270=104-y | | -9y+32=5(y-4) | | 2g-3+4=27 | | 4x+3=20x+9 | | 28(k+2)=924 | | 8=3+2x | | 8y=21+5y | | y2-10=2y2-132 | | v+49/23=5 | | (x-5)2+(2x+3)2=(x+1)2+97 | | -7u+4(u-8)=-35 | | 7/x+50=53 | | 1+6y/7=2 | | 16p+22=454 | | y^2-10=2y^2-132 |