If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=150
We move all terms to the left:
X2+X2-(150)=0
We add all the numbers together, and all the variables
2X^2-150=0
a = 2; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·2·(-150)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*2}=\frac{0-20\sqrt{3}}{4} =-\frac{20\sqrt{3}}{4} =-5\sqrt{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*2}=\frac{0+20\sqrt{3}}{4} =\frac{20\sqrt{3}}{4} =5\sqrt{3} $
| 11-2x=17-5x | | 2.45x+1.5=3.7x-2.55 | | 4y/2=20 | | (3x-4)2=8x(x-3)+52 | | -7=n+ | | 1.8=n3.14 | | 15/t=2 | | 9c-15=48 | | .3x=5 | | 5q-35=0 | | 8d-18=22 | | 7(x-5)=2(3x-1) | | 9z+3-4z=23 | | 7k-13=29 | | 4(2x-1)=25 | | 2x+x+45°=180° | | x²-8x+13=0 | | 8-(3x+7)=0 | | 29=-7-15y | | 6(5/6x+2/3)=9 | | 5(x-2)÷1=6(x+4)-7 | | 9-3(8-5x)=0 | | x÷15=0.356 | | x*(x^2-1)=120 | | 4x-1x+6=0 | | 6–5x=7+3x | | 2y-1/5=4y-2 | | 3y-5/12=4+5 | | n²-11n+19=5 | | -10f=-5f+5 | | 7h+7=6h | | x^2-75=25 |