If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x=56
We move all terms to the left:
x2+6x-(56)=0
We add all the numbers together, and all the variables
x^2+6x-56=0
a = 1; b = 6; c = -56;
Δ = b2-4ac
Δ = 62-4·1·(-56)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{65}}{2*1}=\frac{-6-2\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{65}}{2*1}=\frac{-6+2\sqrt{65}}{2} $
| 10m=-7+9m | | 10q+9=10q−8 | | x+11+2x-4+2x+7+2x+13+2x-17+3x-6+3x-9+6x=360 | | 13s+20(2235-s)=34431 | | K=(3x9)-(5x0) | | x-+10=-6 | | 7(x-1)-4=4x+3(-2+x) | | (3/4x)+6=4-x | | 15=5+23t-16t^2 | | 15+(35+16)=15+35+n | | -x-10=8 | | 2235(13n+20n)=34431 | | x+10/20=(3/4)x | | 9u^2+36=0 | | -10+4k=6k+10 | | 5x-9+3x=7+8x-16 | | 0=2u^2+u-3 | | 20+n-3n-4=-2n+16 | | -7−10d=-10d | | -u−6−7u=6−8u | | 3u/2=48 | | 6c=6c+5 | | 4(5+6p)=-124 | | 2+8h=8h+2 | | 2−5g=7−5g+7 | | 0.07(3t-9)=0.21(t+1)-0.84 | | 2n−6=-10+n−6 | | (4x-23)+(98-2x)+(4x+27)=180 | | 9y+2=3y+5 | | (11+3x)=170 | | 3c−7=3c | | 0.07(3t-9)=0.21(t-1)-0.84 |