If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+29x+100=0
We add all the numbers together, and all the variables
x^2+29x+100=0
a = 1; b = 29; c = +100;
Δ = b2-4ac
Δ = 292-4·1·100
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-21}{2*1}=\frac{-50}{2} =-25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+21}{2*1}=\frac{-8}{2} =-4 $
| 6(2x+4)=3(4x+8 | | -11=6+f | | (8x-17)+(7x+2)=90 | | x^2±4=20 | | 4^x+^2=8^x | | 60=-5b | | 89.7=31x+x | | 4^x+2=8^x | | 7(-3x+10)=-182 | | 10x+3x+x=180 | | 7=z+6 | | 49^x+1=7^0.5 | | 94=3+7(2m+1) | | 5^(x+1)=5^2x-3 | | 4x+6=-6x+66 | | -12=2k | | 3x+5+9x+7=180 | | y+10=23 | | 10y-26=4y+10 | | 3/5s=-8 | | (8^x)-2=0 | | 2(t-4)4=3-(3t+1) | | a-0.15a=815 | | 5x+6x-20=60-9x | | 20-z=15 | | 63+52+5x=180 | | 7x-10×=15 | | (3x+5)+(9x7)=180 | | 3x+-8=13 | | 7x-10-3x=8x-5 | | 7+z=24 | | (3^x+4)=27 |