If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+28x+96=0
We add all the numbers together, and all the variables
x^2+28x+96=0
a = 1; b = 28; c = +96;
Δ = b2-4ac
Δ = 282-4·1·96
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-20}{2*1}=\frac{-48}{2} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+20}{2*1}=\frac{-8}{2} =-4 $
| 3(8-7x)=87 | | 8+10^0.2x=36 | | 5x-3=3x+19+15x-73=180 | | -4-4(-5n-2)=17+7n | | 22x=11x+132 | | (x+40)+(4x-5)=180 | | 5x-3=3x+19+15x-73 | | 8x+3=11x-8 | | Y=11;x=1/3 | | -(2+8x)=-20-2x | | x2+4x+96=0 | | 3y+1/4=4y+1/2 | | Y=9;x=0.5 | | 6.x-10=90+.× | | -24+4x=8(7+3x) | | x-16=-113 | | X2+6x+63=0 | | 5x-3=3x+19=180 | | -3=8x+5x | | 232=3x^2+5x | | 4x=50+2x^2 | | 2x⁴-4x³-6x²=0 | | (3n−1)+(4−n)=0 | | 3x+9=30*x | | (2x+27)°(2x-11)°=100 | | 3x+9=30*× | | 4x²-18x=0 | | -4x-10=2.x+14 | | x+21°=7x-3° | | -4/3b=12 | | 4(k-5)=3(2-3k) | | 2+25z=5z+42 |