If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+18x-95=0
We add all the numbers together, and all the variables
x^2+18x-95=0
a = 1; b = 18; c = -95;
Δ = b2-4ac
Δ = 182-4·1·(-95)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{11}}{2*1}=\frac{-18-8\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{11}}{2*1}=\frac{-18+8\sqrt{11}}{2} $
| (5/3)(x-16)=4x+2 | | 50n^2-80n=100n^2 | | 4x+2=4x+45 | | (2x+1)^2-3(2x+1)-10=0 | | c+10=25 | | 3.9-x=8.6 | | h(3)=1250(0.135)^3 | | 4.5r-5=5 | | 6x+13=14x+13 | | (3+6)+(3x+19)+(7x+7)=180 | | 54-5x=9 | | 126=x+77 | | 3.5-3y=7 | | 4x+7=35=95 | | 3(x+9)-3=-2(x+8) | | 12-(-c+3)=10 | | 180=0.2x+x | | 4x+18+32=54 | | 2y+60+62=180 | | 4x(44-6)=(-76+2) | | -1-4y=-8 | | 16x-(7x-3)=12 | | x+(2x+10)=2(x+10) | | 1-3x-15=-8 | | 2f+8=f-3 | | 8x^2+2x=136 | | 14=7/5x | | (3x+14)+(3x+18)=180 | | (3x+14)+(3x+18)+(7x+13)=360 | | (3x+14)+(3x+18)+(7x+13)=180 | | 1/3(21x+15)-16=-1/2(16x-12) | | 10(-1)-2y=6 |