If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3(21x+15)-16=-1/2(16x-12)
We move all terms to the left:
1/3(21x+15)-16-(-1/2(16x-12))=0
Domain of the equation: 3(21x+15)!=0
x∈R
Domain of the equation: 2(16x-12))!=0We calculate fractions
x∈R
(2x1/(3(21x+15)*2(16x-12)))+(-(-3x2)/(3(21x+15)*2(16x-12)))-16=0
We calculate terms in parentheses: +(2x1/(3(21x+15)*2(16x-12))), so:
2x1/(3(21x+15)*2(16x-12))
We multiply all the terms by the denominator
2x1
We add all the numbers together, and all the variables
2x
Back to the equation:
+(2x)
We calculate terms in parentheses: +(-(-3x2)/(3(21x+15)*2(16x-12))), so:determiningTheFunctionDomain 3x^2+2x-16=0
-(-3x2)/(3(21x+15)*2(16x-12))
We add all the numbers together, and all the variables
-(-3x^2)/(3(21x+15)*2(16x-12))
We multiply all the terms by the denominator
-(-3x^2)
We get rid of parentheses
3x^2
Back to the equation:
+(3x^2)
a = 3; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·3·(-16)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-14}{2*3}=\frac{-16}{6} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+14}{2*3}=\frac{12}{6} =2 $
| 10(-1)-2y=6 | | -87=7x+11-66 | | (3x+13)+(2x+24)+(6x+20)=180 | | 6v+4(v+8)=12 | | 7x-17=4x+2 | | 19=-7y+2(y-8) | | 8x-74=2x-8 | | 1/4x-12+7/4x=4 | | 6^2+2x-9=0 | | 1/4a-12+7/4=4 | | 9-6r=24-8r+7 | | -27-3p+3p=2p+3 | | x^2+2=-3 | | Y^2-2y+12=6y | | 6a=2a-36 | | 8x-7+2x=16+5x+2 | | 4x+60=3x | | 2x^2-8+4x=0 | | -2x-x+3=-12 | | -3.1p-15.91-7.8=11.82-1.2p | | 3^2-5x=-2 | | -9n-3=-18-11n+n | | 29x^2-5x+142=0 | | 25=w+10 | | -19-15t=-14t | | 124=2y | | 4-8s=-10-7s | | 17.08-2.9c=3.99-3.6c | | 32/x=8/9 | | -15-20+19d=19+13d | | v+3.9=5.41 | | -20+17y=15y+20 |