If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+14x=-48
We move all terms to the left:
x2+14x-(-48)=0
We add all the numbers together, and all the variables
x^2+14x+48=0
a = 1; b = 14; c = +48;
Δ = b2-4ac
Δ = 142-4·1·48
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2}{2*1}=\frac{-12}{2} =-6 $
| 10z-2=28 | | 5(x+7)ଶ−17=48 | | 5x+34=180-(2x+76) | | 3xଶ−25=40 | | v-8.46=6.7 | | 5n*12.345678987654321+0.1111111111111123123123=5/n | | 5n*123+0.1111111111111123123123=5/n | | 5n+n+0.1111111111111123123123=5/n | | (4D^3-3D+1)y=0 | | 5n(n+0.1111111111111123123123)=5/n | | 5n+0.1111111111111123123123=5/n | | 5n+0.1111111111111=5/n | | -3a+12-7a=-4a-6a | | 15+0.50h=25+0.25h | | (7x+10)=(12x-1) | | 5n+0.1=5/n) | | 51n+0.1=(5/n) | | 51n=(11115/n) | | 51n=(5/n) | | x+3/5=5/1/2 | | 5n=(5/n) | | 5n=(5/n)*1 | | 5n=(5/n)*1.22 | | 5n=5/n*1.22 | | 5n+5=(5/n) | | 5n+5*5*5*5=1.5(5/n) | | (m)/(16)-9=-8 | | 5n+0.1231231=5/n | | 6x+7=8x+4−2x | | 3=(2(x+4) | | 5n+0.1=5/n | | 5n=5/n |