5n+0.1111111111111=5/n

Simple and best practice solution for 5n+0.1111111111111=5/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5n+0.1111111111111=5/n equation:



5n+0.1111111111111=5/n
We move all terms to the left:
5n+0.1111111111111-(5/n)=0
Domain of the equation: n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
5n-(+5/n)+0.1111111111111=0
We get rid of parentheses
5n-5/n+0.1111111111111=0
We multiply all the terms by the denominator
5n*n+(0.1111111111111)*n-5=0
We multiply parentheses
5n*n+0.1111111111111n-5=0
Wy multiply elements
5n^2+0.1111111111111n-5=0
a = 5; b = 0.1111111111111; c = -5;
Δ = b2-4ac
Δ = 0.11111111111112-4·5·(-5)
Δ = 100.01234567901
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.1111111111111)-\sqrt{100.01234567901}}{2*5}=\frac{-0.1111111111111-\sqrt{100.01234567901}}{10} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.1111111111111)+\sqrt{100.01234567901}}{2*5}=\frac{-0.1111111111111+\sqrt{100.01234567901}}{10} $

See similar equations:

| -3a+12-7a=-4a-6a | | 15+0.50h=25+0.25h | | (7x+10)=(12x-1) | | 5n+0.1=5/n) | | 51n+0.1=(5/n) | | 51n=(11115/n) | | 51n=(5/n) | | x+3/5=5/1/2 | | 5n=(5/n) | | 5n=(5/n)*1 | | 5n=(5/n)*1.22 | | 5n=5/n*1.22 | | 5n+5=(5/n) | | 5n+5*5*5*5=1.5(5/n) | | (m)/(16)-9=-8 | | 5n+0.1231231=5/n | | 6x+7=8x+4−2x | | 3=(2(x+4) | | 5n+0.1=5/n | | 5n=5/n | | 5n=5n+0.1 | | 5n=5n+3 | | y=5.4(0)+34 | | (b+11)/(3)=-2 | | 5n=5n+50 | | 3(×+6)=39,x | | 5n=5n+5 | | 5n=5*n+5 | | 5n=6n | | n*2=n/2 | | 6*7=21*x | | n*2=23n |

Equations solver categories