If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+10x=1200
We move all terms to the left:
x2+10x-(1200)=0
We add all the numbers together, and all the variables
x^2+10x-1200=0
a = 1; b = 10; c = -1200;
Δ = b2-4ac
Δ = 102-4·1·(-1200)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-70}{2*1}=\frac{-80}{2} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+70}{2*1}=\frac{60}{2} =30 $
| 23-8b=63 | | 25-c=35 | | x2*10=1200 | | 2x+10=1200 | | x+10=1200 | | 4(x+10)=10-6x | | 3/10t=12 | | (v+2)2=40 | | 17(5c-1)-2=83c+17 | | 1+8x=7x-7 | | e+165=273 | | 490t2-250=0 | | 6y-10y=-10-14 | | d-22.5=132 | | 8e=96 | | -5-(-47)=x/8 | | 5=0.1x^2+1.1x+3 | | 132=2.5d | | -24=1x+7 | | 4(p-15)-3=9 | | 24+x=65 | | -3r+2r=-6 | | 4(q-11)-17=-1 | | 2(y-19)+12=2 | | 2x^2+36x=-90 | | -18j+14=-20j | | 9s+6=-6s+6 | | V(x)=120x-4x2-4x3 | | 60=200-0.05t | | -19t-(-9t)=10 | | 124-64x=2x+4 | | 100/x=72 |