If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+(x2+1)=365
We move all terms to the left:
x2+(x2+1)-(365)=0
We add all the numbers together, and all the variables
(+x^2+1)+x2-365=0
We add all the numbers together, and all the variables
x^2+(+x^2+1)-365=0
We get rid of parentheses
x^2+x^2+1-365=0
We add all the numbers together, and all the variables
2x^2-364=0
a = 2; b = 0; c = -364;
Δ = b2-4ac
Δ = 02-4·2·(-364)
Δ = 2912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2912}=\sqrt{16*182}=\sqrt{16}*\sqrt{182}=4\sqrt{182}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{182}}{2*2}=\frac{0-4\sqrt{182}}{4} =-\frac{4\sqrt{182}}{4} =-\sqrt{182} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{182}}{2*2}=\frac{0+4\sqrt{182}}{4} =\frac{4\sqrt{182}}{4} =\sqrt{182} $
| 16+0.15x=-12+0.35x | | -8(6+2x)=-32 | | 4x-(-2)=14 | | -12+0.35x=154.25 | | 7d=d-4d-7=5d | | 2x^2-20x-46=0 | | 21=6x-3-6 | | 16+0.15x=42.25 | | (x+9)^2=2 | | -3(3x-)-3x-1=-108 | | 300x+6,250=1000 | | 2x-5(x-4)=-2+5x-34 | | 8/3=6/y | | x-7=3x+4+2x-9 | | 8x-(9x+6)=5x-18 | | 28/24=7/x= | | 3a+1=9a-a | | 20-x=27 | | 10-2x=2-6x | | 102-v=219 | | 84–x=37 | | 3x+13+13+11=-9 | | 0=0.4x+0.8 | | 238-y=136 | | 137-x=50+2x | | x÷100=25 | | 7x+11=1+17x | | 3x-4x-180x=0 | | 0=p+48 | | 3x―4x―180x=0 | | 6x-3(2x-4)=-12 | | 8x2-4x-180x=0 |