If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x-180x=0
We add all the numbers together, and all the variables
8x^2-184x=0
a = 8; b = -184; c = 0;
Δ = b2-4ac
Δ = -1842-4·8·0
Δ = 33856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{33856}=184$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-184)-184}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-184)+184}{2*8}=\frac{368}{16} =23 $
| 0.13x=0.65x | | 3m−6=5m+8 | | 26=7+2(p+1) | | 2(y-1)+3(y-3)=19 | | x/20=12/10 | | -2k+19=3k=1 | | 2.25t+5=0.75t+14 | | 26=2x+22 | | 22w−42=34−16w | | 22/4=m/10 | | 5.4+0.2x=0.4x | | 3x(2x+2)−2x2+2=1 | | 5.4+0.2x=7.4 | | 5.4+0.2x=7.4x | | 51x+32x=1 | | (3x^2)-1=-8x | | .3+1=3(x-1)+4 | | 3x=7=4x+1 | | -x/4=34=12 | | 7y+3-2y=+5 | | x/4-15=4 | | 2 = q3 − 2 | | 1/64*1/256=4n | | X^2+2x-63=O | | 12*18=6n | | 2(-2x-7)=-5 | | 3(x+5)=+21 | | 15x+12=14x+20 | | 7x=9x-38 | | 3/4x+8=9 | | X+1/3x=2 | | 1.4x=612+0.2x |