If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x1+7x^2=4
We move all terms to the left:
x1+7x^2-(4)=0
We add all the numbers together, and all the variables
7x^2+x-4=0
a = 7; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·7·(-4)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{113}}{2*7}=\frac{-1-\sqrt{113}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{113}}{2*7}=\frac{-1+\sqrt{113}}{14} $
| x5–10x3+9x=0 | | 0=n–18 | | 4x^2-16=24 | | (b-30)+b+(b+24)=180 | | 180=(b-30)+b+(b+24) | | 5x^2+2=12 | | 2y+y+y=180 | | X^2-10/x-1=-5x-14/x-2 | | (x+2)²+(x-3)²=9 | | 5y+1=4+y | | 5y+1=4+1 | | 5(x –4)+3x –9x =6–(2x +5)+8x | | -15=-14s | | 21,000xX^5=25,000 | | 2/x+3x/4=2/6 | | 3(b-3)=27 | | 6u(2–u)=7 | | 4(k—3)=2—(2k—6) | | x-12=2x-13 | | 4c+3=3(c—-4) | | k=2(11-—k)+14 | | 6k—-3-2k=k-3 | | 3x-3=x+ | | 8+4z=-13+4z | | 2d/3-15=3 | | 5x²–125x=0 | | (20+x)+(x+39)=90 | | 5x/6=5/6(x) | | 1+4x5=3 | | (10-x)^2+10010=0 | | (20+x°)+(x+39°)=90 | | 7b-3=-3b+7 |