x/9x+1-7x-18=3x+5

Simple and best practice solution for x/9x+1-7x-18=3x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/9x+1-7x-18=3x+5 equation:



x/9x+1-7x-18=3x+5
We move all terms to the left:
x/9x+1-7x-18-(3x+5)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
-7x+x/9x-(3x+5)-17=0
We get rid of parentheses
-7x+x/9x-3x-5-17=0
We multiply all the terms by the denominator
-7x*9x+x-3x*9x-5*9x-17*9x=0
We add all the numbers together, and all the variables
x-7x*9x-3x*9x-5*9x-17*9x=0
Wy multiply elements
-63x^2-27x^2+x-45x-153x=0
We add all the numbers together, and all the variables
-90x^2-197x=0
a = -90; b = -197; c = 0;
Δ = b2-4ac
Δ = -1972-4·(-90)·0
Δ = 38809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{38809}=197$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-197)-197}{2*-90}=\frac{0}{-180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-197)+197}{2*-90}=\frac{394}{-180} =-2+17/90 $

See similar equations:

| √2x+11=x+4 | | -4(x+4)=2x-6+3(4x+2) | | 8(x-4)+3x=23 | | 3x-2x^2-12+8x-5x^2+1x+15x+3=2x^2-23x-87 | | 2i/7-6i=0 | | 0.22(x+9)=0.2x+5.9 | | 2x2+11x+14=0 | | w(4-w)=8-w | | 21x=5+16x | | 5a+3=2a+3 | | 6x+2x+4=46 | | 3(7-2x)=4 | | 2+4(2x-2)=34 | | (5n)^2=3+n | | 2.2-0.5x=0.7x-0.2 | | 8(-2)=(13.8x-13.5) | | 21-6x=4 | | 0.20k+7=0.30k+5 | | 9(x-6)-6x=-5(9-x) | | X^2+16=5x^2 | | 2z^2+13z+1=8 | | 15(x+14)=225 | | X+x+20x-2200=63800 | | X(x+7)=9x+3 | | 10(x+2)=9(x-3)+x | | 2.33=y-21/2.21 | | 5x+6/7=4x | | -31-12x=15-14x | | Y=300-15x | | 2x-3/8+x=(2x+3/2+2 | | -8x-54=14-2x | | 3^6x+5=5^x-4 |

Equations solver categories