If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x.2(x+4)=16
We move all terms to the left:
x.2(x+4)-(16)=0
We multiply parentheses
x^2+4x-16=0
a = 1; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*1}=\frac{-4-4\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*1}=\frac{-4+4\sqrt{5}}{2} $
| −7.8c=1.56 | | 23y=112 | | -9u=-3-10u | | X+2(x-5)=22-x | | 9.8=2p+2 | | 711=x-0.1x | | -7m+22m=4m | | 2.50x-5=15 | | -2f+6=4 | | 9-2x=8x-6 | | x-7=-x+3 | | (9x25)=(13x–19) | | X^2-6x+9=x+5 | | 40=-1/3(9x=30)=2 | | -b+10.7=-4.1 | | −3x+9=−18 | | 5z=6z+8 | | 0.08x-1.75=8.13 | | x=-6+1/2 | | -2x+12=-1x+6 | | -4x+16=84 | | -5+12=3x+-8 | | (9x–25)=(13x–19) | | 24+8-40=x | | 75+0.17x=2x | | 20(-1.5r+0.75)=4 | | 87+32+c=180 | | -5/4x+5/3x=-35/36 | | 3x+2=130 | | 66=4w=10 | | –3(s+2.9)=0.9 | | j+20+19=-17-6j |