x-16+2x-211+1/2x+8=180

Simple and best practice solution for x-16+2x-211+1/2x+8=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-16+2x-211+1/2x+8=180 equation:



x-16+2x-211+1/2x+8=180
We move all terms to the left:
x-16+2x-211+1/2x+8-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+1/2x-399=0
We multiply all the terms by the denominator
3x*2x-399*2x+1=0
Wy multiply elements
6x^2-798x+1=0
a = 6; b = -798; c = +1;
Δ = b2-4ac
Δ = -7982-4·6·1
Δ = 636780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636780}=\sqrt{4*159195}=\sqrt{4}*\sqrt{159195}=2\sqrt{159195}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-798)-2\sqrt{159195}}{2*6}=\frac{798-2\sqrt{159195}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-798)+2\sqrt{159195}}{2*6}=\frac{798+2\sqrt{159195}}{12} $

See similar equations:

| -14-6=9n-8(2+n) | | (2x/5)-(x-2/3)=(x/5) | | (x+6)1/3=5 | | -4x+3=-6x=3 | | 1/6y+2=-10 | | 4(x-5)+3x=2(-3x+3) | | -4x-31=13 | | 4(2x-6)=3(5x+9) | | -4x-34=x | | -13k-6=-12k-20 | | 2x-6=3x-1/2 | | -8+3n=-2(-4n+4)+n | | y+16=40 | | -2=19=3k-1 | | t-5=26 | | 8x-5x-6=24 | | 2(4x-3)+4=1-4x | | 12x=x-3x+7+2 | | 2.1xx=23.1 | | -12+5a=3(a-3) | | 2x−6=3x−122x-6=3x-1/2 | | 12x-8+3x=5x-9+2x-7 | | 16j+4j-19j=17 | | -2=19=37k-1 | | -4x+3=-4x=3 | | 246.5=x-0.05(x) | | a2+6=11 | | 2p=p-14 | | -6d+4=-20+2d | | 4x-95=180 | | -38+7x=-129 | | 5h+4=7(h+1)-1 |

Equations solver categories