x-(2+3i)(x-3i)(x+3)(x-3)=0

Simple and best practice solution for x-(2+3i)(x-3i)(x+3)(x-3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(2+3i)(x-3i)(x+3)(x-3)=0 equation:


Simplifying
x + -1(2 + 3i)(x + -3i)(x + 3)(x + -3) = 0

Reorder the terms:
x + -1(2 + 3i)(-3i + x)(x + 3)(x + -3) = 0

Reorder the terms:
x + -1(2 + 3i)(-3i + x)(3 + x)(x + -3) = 0

Reorder the terms:
x + -1(2 + 3i)(-3i + x)(3 + x)(-3 + x) = 0

Multiply (2 + 3i) * (-3i + x)
x + -1(2(-3i + x) + 3i * (-3i + x))(3 + x)(-3 + x) = 0
x + -1((-3i * 2 + x * 2) + 3i * (-3i + x))(3 + x)(-3 + x) = 0
x + -1((-6i + 2x) + 3i * (-3i + x))(3 + x)(-3 + x) = 0
x + -1(-6i + 2x + (-3i * 3i + x * 3i))(3 + x)(-3 + x) = 0

Reorder the terms:
x + -1(-6i + 2x + (3ix + -9i2))(3 + x)(-3 + x) = 0
x + -1(-6i + 2x + (3ix + -9i2))(3 + x)(-3 + x) = 0

Reorder the terms:
x + -1(-6i + 3ix + -9i2 + 2x)(3 + x)(-3 + x) = 0
x + -1(-6i + 3ix + -9i2 + 2x)(3 + x)(-3 + x) = 0

Multiply (-6i + 3ix + -9i2 + 2x) * (3 + x)
x + -1(-6i * (3 + x) + 3ix * (3 + x) + -9i2 * (3 + x) + 2x * (3 + x))(-3 + x) = 0
x + -1((3 * -6i + x * -6i) + 3ix * (3 + x) + -9i2 * (3 + x) + 2x * (3 + x))(-3 + x) = 0
x + -1((-18i + -6ix) + 3ix * (3 + x) + -9i2 * (3 + x) + 2x * (3 + x))(-3 + x) = 0
x + -1(-18i + -6ix + (3 * 3ix + x * 3ix) + -9i2 * (3 + x) + 2x * (3 + x))(-3 + x) = 0
x + -1(-18i + -6ix + (9ix + 3ix2) + -9i2 * (3 + x) + 2x * (3 + x))(-3 + x) = 0
x + -1(-18i + -6ix + 9ix + 3ix2 + (3 * -9i2 + x * -9i2) + 2x * (3 + x))(-3 + x) = 0
x + -1(-18i + -6ix + 9ix + 3ix2 + (-27i2 + -9i2x) + 2x * (3 + x))(-3 + x) = 0
x + -1(-18i + -6ix + 9ix + 3ix2 + -27i2 + -9i2x + (3 * 2x + x * 2x))(-3 + x) = 0
x + -1(-18i + -6ix + 9ix + 3ix2 + -27i2 + -9i2x + (6x + 2x2))(-3 + x) = 0

Combine like terms: -6ix + 9ix = 3ix
x + -1(-18i + 3ix + 3ix2 + -27i2 + -9i2x + 6x + 2x2)(-3 + x) = 0

Multiply (-18i + 3ix + 3ix2 + -27i2 + -9i2x + 6x + 2x2) * (-3 + x)
x + -1(-18i * (-3 + x) + 3ix * (-3 + x) + 3ix2 * (-3 + x) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1((-3 * -18i + x * -18i) + 3ix * (-3 + x) + 3ix2 * (-3 + x) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1((54i + -18ix) + 3ix * (-3 + x) + 3ix2 * (-3 + x) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + (-3 * 3ix + x * 3ix) + 3ix2 * (-3 + x) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + (-9ix + 3ix2) + 3ix2 * (-3 + x) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + (-3 * 3ix2 + x * 3ix2) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + (-9ix2 + 3ix3) + -27i2 * (-3 + x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + (-3 * -27i2 + x * -27i2) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + (81i2 + -27i2x) + -9i2x * (-3 + x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + (-3 * -9i2x + x * -9i2x) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + (27i2x + -9i2x2) + 6x * (-3 + x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + (-3 * 6x + x * 6x) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + (-18x + 6x2) + 2x2 * (-3 + x)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + -18x + 6x2 + (-3 * 2x2 + x * 2x2)) = 0
x + -1(54i + -18ix + -9ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + -18x + 6x2 + (-6x2 + 2x3)) = 0

Combine like terms: -18ix + -9ix = -27ix
x + -1(54i + -27ix + 3ix2 + -9ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + -18x + 6x2 + -6x2 + 2x3) = 0

Combine like terms: 3ix2 + -9ix2 = -6ix2
x + -1(54i + -27ix + -6ix2 + 3ix3 + 81i2 + -27i2x + 27i2x + -9i2x2 + -18x + 6x2 + -6x2 + 2x3) = 0

Combine like terms: -27i2x + 27i2x = 0
x + -1(54i + -27ix + -6ix2 + 3ix3 + 81i2 + 0 + -9i2x2 + -18x + 6x2 + -6x2 + 2x3) = 0
x + -1(54i + -27ix + -6ix2 + 3ix3 + 81i2 + -9i2x2 + -18x + 6x2 + -6x2 + 2x3) = 0

Combine like terms: 6x2 + -6x2 = 0
x + -1(54i + -27ix + -6ix2 + 3ix3 + 81i2 + -9i2x2 + -18x + 0 + 2x3) = 0
x + -1(54i + -27ix + -6ix2 + 3ix3 + 81i2 + -9i2x2 + -18x + 2x3) = 0
x + (54i * -1 + -27ix * -1 + -6ix2 * -1 + 3ix3 * -1 + 81i2 * -1 + -9i2x2 * -1 + -18x * -1 + 2x3 * -1) = 0
x + (-54i + 27ix + 6ix2 + -3ix3 + -81i2 + 9i2x2 + 18x + -2x3) = 0

Reorder the terms:
-54i + 27ix + 6ix2 + -3ix3 + -81i2 + 9i2x2 + x + 18x + -2x3 = 0

Combine like terms: x + 18x = 19x
-54i + 27ix + 6ix2 + -3ix3 + -81i2 + 9i2x2 + 19x + -2x3 = 0

Solving
-54i + 27ix + 6ix2 + -3ix3 + -81i2 + 9i2x2 + 19x + -2x3 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| y^2-11y-3y+28=0 | | 2(2x+1)=16+3(2x-5) | | 1050=x(100-2x) | | xy-7x=2y | | 12*x=5+x | | (l-2)/7-6=2/3*l | | 8-8-1/3x9 | | In(x)-ln(x+1)=in(x+3)-ln(x+5) | | 6x-1=6x-2 | | 3x^2+18x-45=0 | | 7.8a+10=72.4 | | (2+2j)x(2-2j)= | | 3/5(6x-4)=x-4 | | F(x)5x-4y=18 | | (25b-8)-8(3b+1)=-2 | | =17+3(2m+6) | | 3(2x^1/2)^2 | | s-15=15.54 | | 5x+5x+4+9=5x+4+4x | | 5/3+7/5= | | 4x-7x+5=-3 | | 3x^3-4x^2-8=0 | | 3x-3(2x-5)=5(x-6)+25 | | 23-3(2x+4)=4x-17 | | 3(x-7)=7x-41 | | 1-2*x^3=0 | | 400=5(x)-0.1(x^2) | | 23+12= | | 39.2+a=-6.8 | | (-9.67)(-5.6)= | | -4=8+y | | log[12](2x-6)+2= |

Equations solver categories