x+x-35+1/2x+(x-46)=180

Simple and best practice solution for x+x-35+1/2x+(x-46)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x-35+1/2x+(x-46)=180 equation:



x+x-35+1/2x+(x-46)=180
We move all terms to the left:
x+x-35+1/2x+(x-46)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+(x-46)-215=0
We get rid of parentheses
2x+1/2x+x-46-215=0
We multiply all the terms by the denominator
2x*2x+x*2x-46*2x-215*2x+1=0
Wy multiply elements
4x^2+2x^2-92x-430x+1=0
We add all the numbers together, and all the variables
6x^2-522x+1=0
a = 6; b = -522; c = +1;
Δ = b2-4ac
Δ = -5222-4·6·1
Δ = 272460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272460}=\sqrt{4*68115}=\sqrt{4}*\sqrt{68115}=2\sqrt{68115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-522)-2\sqrt{68115}}{2*6}=\frac{522-2\sqrt{68115}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-522)+2\sqrt{68115}}{2*6}=\frac{522+2\sqrt{68115}}{12} $

See similar equations:

| 4(7^8x)=5 | | w+23/10=3 | | 5(1x-4)-10=7(1-x)+4(x+7) | | (x/2)+((2x-1)/3)=((3x+4)/4) | | 8(7^4x)=9 | | (x−5)2=25 | | -(12+3m)=6 | | 4x-2=6(2+3x) | | t-75/3=8 | | 5.76p=12 | | 3x​2−33x+54=0 | | g/4+14=17 | | 6s−4=8(2+1/4​s) | | 7(2x-5)=-119 | | 12p=5.76 | | w+16/3=7 | | x+1.20=3.5 | | -(2f-7)=-13 | | .5x+5=7-1 | | 6^x-5=17 | | x+(x/2)+(x+5)=115 | | 12(6x-2)-3=7(1-x)+3(x+1) | | m/4+11=13 | | d+6/−2=5 | | 5/6j=5/2 | | n+8=108/9 | | -50-13x=42-9x | | 4=1/3c+2 | | 4*6-3y=y-12 | | -15y=15 | | 40+(p*4.50)=112 | | 3=1/3c+2 |

Equations solver categories