x+x+5=(x+1)(x+2)

Simple and best practice solution for x+x+5=(x+1)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x+5=(x+1)(x+2) equation:



x+x+5=(x+1)(x+2)
We move all terms to the left:
x+x+5-((x+1)(x+2))=0
We add all the numbers together, and all the variables
2x-((x+1)(x+2))+5=0
We multiply parentheses ..
-((+x^2+2x+x+2))+2x+5=0
We calculate terms in parentheses: -((+x^2+2x+x+2)), so:
(+x^2+2x+x+2)
We get rid of parentheses
x^2+2x+x+2
We add all the numbers together, and all the variables
x^2+3x+2
Back to the equation:
-(x^2+3x+2)
We add all the numbers together, and all the variables
2x-(x^2+3x+2)+5=0
We get rid of parentheses
-x^2+2x-3x-2+5=0
We add all the numbers together, and all the variables
-1x^2-1x+3=0
a = -1; b = -1; c = +3;
Δ = b2-4ac
Δ = -12-4·(-1)·3
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{13}}{2*-1}=\frac{1-\sqrt{13}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{13}}{2*-1}=\frac{1+\sqrt{13}}{-2} $

See similar equations:

| -3/4+p=12 | | x+(x-5)=(x+1)(x+2) | | 1/5x+8=2x+4 | | c-c+2c=6 | | 4x+2(x-10)=22 | | 2x+20=5x-6 | | 19y-13y+3=9 | | x+(x+5)=(x+1)(x+2) | | 8x-6=48+6 | | 15h+5h+3h-22h=17 | | x(x+5)=x(x+5)-3+1 | | -5(x-3=5 | | 16y+y-y-2y-4y=20 | | 9s-7s-s=20 | | 3x−6=15,x=​​ | | -2(4+3)=-2(4+y | | -2+3x=-4 | | 24/x=2.4 | | x/x+7+5=1/2 | | 9u2+6u+1=0 | | 1.2x-2.1=0.7x+2.1 | | 4^(6-2x)=1 | | 3x+5(3)=39 | | (x+3)(x-18)=0 | | 2n=3n−8 | | 5x+120=10x+100 | | 6x^2+1=97 | | C(x)=95x+35 | | C(x)=0.18x+35 | | 5x=x-12+x^2 | | 1.25y−20.5=0.5y−11.5 | | 4p^2+2p+14=6 |

Equations solver categories