x+x+4/(x+x)+3=300

Simple and best practice solution for x+x+4/(x+x)+3=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x+4/(x+x)+3=300 equation:



x+x+4/(x+x)+3=300
We move all terms to the left:
x+x+4/(x+x)+3-(300)=0
Domain of the equation: (x+x)!=0
x∈R
We add all the numbers together, and all the variables
x+x+4/(+2x)+3-300=0
We add all the numbers together, and all the variables
2x+4/(+2x)-297=0
We multiply all the terms by the denominator
2x*(+2x)-297*(+2x)+4=0
We multiply parentheses
4x^2-594x+4=0
a = 4; b = -594; c = +4;
Δ = b2-4ac
Δ = -5942-4·4·4
Δ = 352772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{352772}=\sqrt{4*88193}=\sqrt{4}*\sqrt{88193}=2\sqrt{88193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-594)-2\sqrt{88193}}{2*4}=\frac{594-2\sqrt{88193}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-594)+2\sqrt{88193}}{2*4}=\frac{594+2\sqrt{88193}}{8} $

See similar equations:

| 5(98.6)=9c+160 | | x+x+(4/(x+x))+3=300 | | b-16=-14 | | 34x-5=3x-11 | | 5(76)=9c+160 | | 2(7)-12=v. | | 17=3w-4 | | 55×48=8x+66 | | 55(48)=8x(66) | | 2(4+3)+4f=6+6f | | 55×48=8x(66) | | x+x+(x/4)+3=300 | | 200m-100m+14500=5000-150m | | 3(q-6)=27 | | 200m-100m+14500=5000-150 | | x+x+x/4+3=300 | | 200m-100m+48500=5000-150 | | 3x-(2x-6)=9 | | x+x+x/4=300 | | 3^(2x-2)=24 | | 4(p+5)=24 | | y/5-2=-17 | | y/5-2=17 | | 0+y*3y=17 | | ​ 6.4=0.8m | | 5(2x-1)=7x+1 | | 29=4y+5 | | 3(z+3=7+3- | | 21-3x+3x=21 | | 6/15=x/4 | | 2(u-3)-4u=-18 | | 5(u-5)-5=-3(-5u+8)-2u |

Equations solver categories