x+3/X+(x-10)=180

Simple and best practice solution for x+3/X+(x-10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+3/X+(x-10)=180 equation:



x+3/x+(x-10)=180
We move all terms to the left:
x+3/x+(x-10)-(180)=0
Domain of the equation: x!=0
x∈R
We get rid of parentheses
x+3/x+x-10-180=0
We multiply all the terms by the denominator
x*x+x*x-10*x-180*x+3=0
We add all the numbers together, and all the variables
-190x+x*x+x*x+3=0
Wy multiply elements
x^2+x^2-190x+3=0
We add all the numbers together, and all the variables
2x^2-190x+3=0
a = 2; b = -190; c = +3;
Δ = b2-4ac
Δ = -1902-4·2·3
Δ = 36076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36076}=\sqrt{4*9019}=\sqrt{4}*\sqrt{9019}=2\sqrt{9019}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-190)-2\sqrt{9019}}{2*2}=\frac{190-2\sqrt{9019}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-190)+2\sqrt{9019}}{2*2}=\frac{190+2\sqrt{9019}}{4} $

See similar equations:

| -3m+5=-3(1+m) | | 10x(x+7)=9(x-7)+x | | 12n=n/2-6 | | 8(2x+1)=3x+4+4×+3 | | -7=-4x-15 | | -5(1+4b)=-b+2(-8b+5) | | 25-5=5x+2+x | | Y=6x-15;(8,) | | (7/9=2n+(1/9)) | | x^2-18=643 | | (7/9=2n+(1/9) | | 6x-4=7x+9-x | | N-8+8-7n=8(5n-4)-4(5+5n) | | 100x+10=59 | | 4x-74-3x-3=1 | | 4x−3=−12x+13​ | | 84=7p | | -4x=20-9 | | 4x74-3x-3=1 | | 20+x/5=14 | | x2=55+45 | | -(10-11x)=-(1-12x) | | -(5-4a)=4-5a | | (3s-11)=(s+9) | | 5a^2+800a=0 | | x2=9x+36 | | 3(b+7)-3(b-7)=42 | | 2x2-6=44 | | 3(x-12)-6=31x-294 | | 7(4-2x)-4(5x+8)=64 | | X^2+20x-11200=0 | | x/3+x/8=5/3 |

Equations solver categories