x+20-(2/5x)=50

Simple and best practice solution for x+20-(2/5x)=50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+20-(2/5x)=50 equation:



x+20-(2/5x)=50
We move all terms to the left:
x+20-(2/5x)-(50)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(+2/5x)+20-50=0
We add all the numbers together, and all the variables
x-(+2/5x)-30=0
We get rid of parentheses
x-2/5x-30=0
We multiply all the terms by the denominator
x*5x-30*5x-2=0
Wy multiply elements
5x^2-150x-2=0
a = 5; b = -150; c = -2;
Δ = b2-4ac
Δ = -1502-4·5·(-2)
Δ = 22540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22540}=\sqrt{196*115}=\sqrt{196}*\sqrt{115}=14\sqrt{115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-14\sqrt{115}}{2*5}=\frac{150-14\sqrt{115}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+14\sqrt{115}}{2*5}=\frac{150+14\sqrt{115}}{10} $

See similar equations:

| -8-5x=19 | | 2x-10/11-2x-4/7=10x-35/2 | | 6-4x-8=x+12-3x | | 4+2x/6x=12/5x+2/15 | | 4(2y+7)+3y=6 | | 4(2y+7)+3=6 | | 4(2y+7)+3=6=7 | | 4(2y+7)+3y=7 | | 3(X+1)-4=x-(2x-2) | | 3x-2(2x+13)=-22 | | 5/20=x/2 | | 2(2y+1)+5y=20 | | 2(X+8)=4+(3x+8) | | | | 7z+10–z=8z–2(z–5) | | 3(2x-1)=-4(-x+1)+5 | | 5b^2+240=-70b | | 2x-3=x/3 | | 3x(x−3)+6=3x−2 | | 4x2+36=4 | | 3(x−3)+6=3x−2 | | -5x+2=x+2 | | 9(x−2)+15=9x−3 | | 29=3y-13 | | 1/8x(x−22)=1+2x | | 1/8(x−22)=1+2x | | -2/z+1/2z=3/z-6 | | (x-2)2=3 | | 1/2x+1/3=2x-1/5 | | a/(-4)=12 | | y•4=32 | | z-0,5=3,6 |

Equations solver categories