x+2+x2=x+10

Simple and best practice solution for x+2+x2=x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+2+x2=x+10 equation:



x+2+x2=x+10
We move all terms to the left:
x+2+x2-(x+10)=0
We add all the numbers together, and all the variables
x^2+x-(x+10)+2=0
We get rid of parentheses
x^2+x-x-10+2=0
We add all the numbers together, and all the variables
x^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $

See similar equations:

| 32=8+4m | | 130x=9750 | | 7p-5=65 | | √7x+5=√3x+8 | | 21=18+h= | | 13q+6=6 | | -26+z=39 | | v/(-3)=4.6 | | 22=k+5= | | z/3.25=4 | | 9+4h=21 | | 35=t-15 | | 24=20+c= | | 26=j+12= | | 45=(3.14)(x) | | 58x=2418.6 | | 3(x-4)-16=2(x-8)=6 | | 14=r-2= | | P=2x5+4x3 | | (x^2+2x-3)(4x^2-11)=0 | | -1.5g=6 | | 26=6x(4x-1) | | w-13=21 | | 5(y+4)=20 | | 24=2d+d= | | (-7x/4)-(-3x/2)=13/6 | | 6(x-2)=76=-2x | | (-7x/4)(-3x/2)=13/6 | | 11=8+g= | | -7x/4-3x/2=13/6 | | (10•x/6)(10•x/8)=1010 | | (8x+8)+(5x+12)=14x+11 |

Equations solver categories