x+1=1/22x+8

Simple and best practice solution for x+1=1/22x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+1=1/22x+8 equation:



x+1=1/22x+8
We move all terms to the left:
x+1-(1/22x+8)=0
Domain of the equation: 22x+8)!=0
x∈R
We get rid of parentheses
x-1/22x-8+1=0
We multiply all the terms by the denominator
x*22x-8*22x+1*22x-1=0
Wy multiply elements
22x^2-176x+22x-1=0
We add all the numbers together, and all the variables
22x^2-154x-1=0
a = 22; b = -154; c = -1;
Δ = b2-4ac
Δ = -1542-4·22·(-1)
Δ = 23804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23804}=\sqrt{4*5951}=\sqrt{4}*\sqrt{5951}=2\sqrt{5951}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-2\sqrt{5951}}{2*22}=\frac{154-2\sqrt{5951}}{44} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+2\sqrt{5951}}{2*22}=\frac{154+2\sqrt{5951}}{44} $

See similar equations:

| -5f=-7f−4 | | -5.4=-+.5+h | | 25+2(3x-5)+2x=50 | | v-2.85=5.3 | | 2(x+5)+x=31 | | 25+7y=12y | | x-5.8=7.4 | | x-5.8=7.8 | | (2x+6)(x-1)=90 | | -10(s+1)=9 | | 6(3s+1)=60 | | -4x-26=2-10 | | X^2+7.2x-36=0 | | x×9=45 | | 4x^5+4x^4-13x^3-6x^2+9x+2=0/ | | |3x|=x+8 | | 3.2/x=48/75 | | (x+⅔)(x-½)=0 | | t÷6-2=16 | | 6x-19=7x+7 | | (X+1)+(x+4)=(2-x)(x+2) | | 3.2x=48/75 | | X+(2x)+(2x-20)+(2x-20/4)=140 | | x*3=972 | | 2(x-3)+5x(x-1)=5x2 | | x=2+0.5(1+0.5x) | | 3(2x-4)=5(3x+2)-3 | | 30-2y=36 | | 0=4x2-6x | | x/10+4=1 | | 6y+13=23 | | 450p+135=2300 |

Equations solver categories