x+(x-46)+(x+35)+1/2x=360

Simple and best practice solution for x+(x-46)+(x+35)+1/2x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-46)+(x+35)+1/2x=360 equation:



x+(x-46)+(x+35)+1/2x=360
We move all terms to the left:
x+(x-46)+(x+35)+1/2x-(360)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-46+35-360=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x+35*2x-360*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x+70x-720x+1=0
We add all the numbers together, and all the variables
6x^2-742x+1=0
a = 6; b = -742; c = +1;
Δ = b2-4ac
Δ = -7422-4·6·1
Δ = 550540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{550540}=\sqrt{4*137635}=\sqrt{4}*\sqrt{137635}=2\sqrt{137635}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-742)-2\sqrt{137635}}{2*6}=\frac{742-2\sqrt{137635}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-742)+2\sqrt{137635}}{2*6}=\frac{742+2\sqrt{137635}}{12} $

See similar equations:

| -2÷5=6-5÷3x | | -12x+4(x-9)=3(2-5x) | | -4m-1-2=1 | | 6x+11=-(6x+) | | –4x+13=–7x+22 | | 2(x-1)=3(x+3+ | | u−7=2 | | -2x²+8=-1x+6 | | -2/5=6-5/3x | | -5=5p-6p | | 3/4x+7/2=1/4x+6 | | 0.2x=1246 | | -2c–6=10 | | s/2+5=3 | | 14c+6=2(5+7c)-4 | | c+1=10 | | x+8=4x=6x−3 | | s/2+-9=-7 | | 8=y/5+6 | | 10=4x-5-5 | | 5-4v+1=18 | | 13/p=26/6 | | -h+-4=3 | | 4(7x-1)=3(2x+1-4(x+6) | | -12=-9-3k | | p/2+3=6 | | 26/6=13/p | | 4p+4-6p=16 | | 3+2j=-1 | | 10x+9=3+2(5+x) | | 9x/5-4=2 | | 4(-x+4)-8=-5(x-4) |

Equations solver categories