x+(x-35)+(x-45)+1/2x=180

Simple and best practice solution for x+(x-35)+(x-45)+1/2x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x-35)+(x-45)+1/2x=180 equation:



x+(x-35)+(x-45)+1/2x=180
We move all terms to the left:
x+(x-35)+(x-45)+1/2x-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+x+x+1/2x-35-45-180=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-45*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-90x-360x+1=0
We add all the numbers together, and all the variables
6x^2-520x+1=0
a = 6; b = -520; c = +1;
Δ = b2-4ac
Δ = -5202-4·6·1
Δ = 270376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{270376}=\sqrt{4*67594}=\sqrt{4}*\sqrt{67594}=2\sqrt{67594}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-520)-2\sqrt{67594}}{2*6}=\frac{520-2\sqrt{67594}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-520)+2\sqrt{67594}}{2*6}=\frac{520+2\sqrt{67594}}{12} $

See similar equations:

| x2+24x=127=0 | | 4n^2-30=-14n | | 5p+5=10p | | 42+(4x+2)=90 | | 2(s+11)+2(s+11)=8s+6 | | x+2/3+x+3/4=4 | | 89*(4x+1)=180 | | 65-2x=75-3x | | -55-15x=-12x+41 | | 1000f=4,135.135135 | | –10=8+3x | | –10=8+3x. | | -6x-67=20-9x | | (X-7)(x-7)-4=(x+1)(x+1) | | -37-15x=-12x+44 | | 75+10n=75+10(n+15) | | −7a=−12a−65 | | -37-15x=12x+44 | | M+(m+50)+(m+150)=1000 | | 8(4n+6)=-25+7n | | 6x+18=10x+1+31 | | 12x^2-4x-96=0 | | -6x+8=-8 | | 18+6x=10x+1+31 | | -127-13x=161-5x | | 1/aa=3 | | u/2-2=u/3 | | u/2-2=u/4 | | (5)/(8)=(n)/(n-9) | | 15x-5=7x-4+39 | | -2x-81=x+21 | | 5p+6=-44-8 |

Equations solver categories