x+(x*x)/2=10

Simple and best practice solution for x+(x*x)/2=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(x*x)/2=10 equation:



x+(x*x)/2=10
We move all terms to the left:
x+(x*x)/2-(10)=0
We add all the numbers together, and all the variables
x+(+x*x)/2-10=0
We multiply all the terms by the denominator
x*2+(+x*x)-10*2=0
We add all the numbers together, and all the variables
x*2+(+x*x)-20=0
Wy multiply elements
2x+(+x*x)-20=0
We get rid of parentheses
2x+x*x-20=0
Wy multiply elements
x^2+2x-20=0
a = 1; b = 2; c = -20;
Δ = b2-4ac
Δ = 22-4·1·(-20)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*1}=\frac{-2-2\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*1}=\frac{-2+2\sqrt{21}}{2} $

See similar equations:

| 2|3x+4|-10=12 | | 3/x+16=4/48 | | 8g(4)=g+9 | | 36/d=2/3 | | -6+u=23 | | 8=14+6x | | 21x+40=18x+10 | | p-3/4=6 | | 2n-5+×5n-5=5 | | 4/5x+6/7=44/35 | | -4,900÷70=a | | -3x-6=-42/5 | | 8x8=12 | | x^2-4x-450=0 | | 4x(2x-6)=24 | | 3/x-4=5/2x-7 | | 2x+(x-17.85)=71.7 | | x+36=39 | | h/5+3=7 | | 95+60+2x+x=360 | | 3.99+79n=13.99+79n | | w/5-13=29 | | 4v-11=61 | | 8.1a+13=110.2 | | -6=13+m | | 3/5x+7/9=142/495 | | 3(x+2)=5x-2(2x-11) | | 14x-15-139=180 | | x+13-x/5=x/6+x+1/3 | | 6b=b7 | | x+1/3-x/5=x/6+x+1/3 | | 5(x+3)=5x+12.5 |

Equations solver categories