x+(1/3x)-1=139

Simple and best practice solution for x+(1/3x)-1=139 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/3x)-1=139 equation:



x+(1/3x)-1=139
We move all terms to the left:
x+(1/3x)-1-(139)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+1/3x)-1-139=0
We add all the numbers together, and all the variables
x+(+1/3x)-140=0
We get rid of parentheses
x+1/3x-140=0
We multiply all the terms by the denominator
x*3x-140*3x+1=0
Wy multiply elements
3x^2-420x+1=0
a = 3; b = -420; c = +1;
Δ = b2-4ac
Δ = -4202-4·3·1
Δ = 176388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176388}=\sqrt{4*44097}=\sqrt{4}*\sqrt{44097}=2\sqrt{44097}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-2\sqrt{44097}}{2*3}=\frac{420-2\sqrt{44097}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+2\sqrt{44097}}{2*3}=\frac{420+2\sqrt{44097}}{6} $

See similar equations:

| (3x-6)(8x+9)=0 | | 14s+14+3s=14s-10 | | 19-3+18d=14d-20 | | 8-7c-10=16-8c | | 9n+16n-20=16+19n | | -18-4+13t=11t+10 | | (v+3)(v-15)=0 | | 4m-8-10=-13+9m | | 6+15y=10y-14 | | -13m-19=3-15m | | 1/4x+1/5x=1 | | (5)=9x+8 | | 2/3x-5/2=5 | | .66x=2.5 | | 15-3=20x+12 | | 6-2x=1.4+7x | | (9)=2/3x-5 | | -9q−-11q−-6=-14 | | 24x-12(x-2)=6(x+3)+6 | | 300+36x=40x | | (4x+25)=(2x+45) | | 4z-z-3=12 | | -3(s-9)=3 | | 1000=200+5d | | 10-q=1 | | -2(r-7)=-10 | | 75=1/2h(12+13) | | 172(60/x)=80 | | 3x+15=-2(x-10) | | 2+.09x=3+.07x | | -18-2z-20z=-20z+10 | | X-24+1/3x+12+2x-108=180 |

Equations solver categories